If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+3k-14=0
a = 3; b = 3; c = -14;
Δ = b2-4ac
Δ = 32-4·3·(-14)
Δ = 177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{177}}{2*3}=\frac{-3-\sqrt{177}}{6} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{177}}{2*3}=\frac{-3+\sqrt{177}}{6} $
| 3x-(-89)=101 | | x^2-3x+17x+49=0 | | d2–18d+81=13 | | 9*12=16x | | 8x-6x=-25 | | 8=1/2x+5 | | y=50+0.75 | | -3+2(3x+4)=6x+5 | | H(x)=4(5)+4 | | H(x)=4(4)+4 | | H(x)=4(-3)+4 | | H(x)=4(-0)+4 | | H(x)=4(-2)+4 | | Xx7=28 | | x/(-3)+4=8 | | 2g-13=3 | | -3/2x-3=2/5 | | 178=134-w | | 5.4(2-x)=-1.4(x+2) | | 5(2x=4)=8(x-3) | | 10-3p=8-5p | | 4(25-c=156 | | 20+3t=95 | | 5=17+17d | | 32x=384 | | c~7.6=-4 | | 21x=35015+9.25x | | 5x+13+9x-43=180 | | x3-x-12=0 | | 2x-1/3X=1/2 | | 12x-2/3=249 | | 5x+6=-4x+24 |